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Abstract

A chiral scandium–bipyridine complex catalyzes the highly enantioselective addition of phenylselenol to aromatic meso-epoxides and
furnishes 1,2-seleno alcohols in good yields and up to 94% ee. In addition, a sequential, one-pot epoxide opening-reduction protocol has
been developed for the direct synthesis of 1,2-diaryl carbinols.
� 2007 Elsevier Ltd. All rights reserved.
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The catalytic asymmetric ring-opening of meso-epoxides
continues to be a powerful strategy to furnish chiral 1,2-
difunctionalized fine chemicals with two contiguous stereo-
genic centers in just one step.1 According to this strategy a
number of protocols have been developed for the synthesis
of enantiomerically highly enriched 1,2-azido alcohols,2

1,2-amino alcohols,3 1,2-diol derivatives,4 1,2-cyano
alcohols,5 1,2-mercapto alcohols,6 and 1,2-halohydrins.7

Recently, Zhu and co-workers reported the first catalytic,
enantioselective addition of aryl selenols to a range of
meso-epoxides with a heterobimetallic titanium–gall-
ium(salen) complex, which was shown to act as a mixed
Lewis acid–Lewis base catalyst.8 Excellent enantioselecti-
vities were obtained for cyclic epoxides whereas acyclic
and in particular aromatic epoxides turned out to be less
suitable substrates for this protocol delivering the ring-
opened 1,2-seleno alcohols in just over 70% ee.

We have previously developed highly enantioselective
scandium– and indium–bipyridine-catalyzed processes for
the addition of alcohols, amines, and thiols to meso-epox-
ides furnishing valuable and highly enantiomerically
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enriched 1,2-diol monoethers,9 1,2-amino alcohols,10 and
1,2-mercapto alcohols,11 respectively, in partly excellent
enantioselectivities of up to 98% ee. We report here that
this protocol can be extended to the addition of phenyl-
selenol to aromatic meso-epoxides giving rise to 1,2-seleno
alcohols in good yields and up to 94% ee, which nicely
complements the Zhu process. Furthermore, a direct access
to 1,2-diaryl carbinols via an in situ epoxide opening-
reduction sequence has been developed by a slight modifi-
cation of the reaction conditions.

We started our studies with the reaction of cis-stilbene
oxide (1a) and phenylselenol (2) (2 equiv) in CH2Cl2 and
treated this mixture with 10 mol % of each Sc(OTf)3 and
bipyridine 3 for 12 h at rt (Scheme 1). The ring-opened
1,2-seleno alcohol 4a was obtained in 60% yield and 93%
ee along with 20% of the corresponding deselenated carbi-
nol 5a in almost identical ee. Control experiments revealed
that the formation of carbinol 5a proceeded via the 1,2-
seleno alcohol 4a as purified 4a when submitted to the reac-
tion again furnished 5a in good yield and identical ee.12

Since this deselenation reaction most likely proceeded in
a radical manner,13 we carefully excluded oxygen and light
in subsequent experiments and added phenylselenol (total
of 3 equiv) portionwise during the reaction. In fact, 1,2-
seleno alcohol 4a was now obtained in 77% yield and
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Scheme 1. Scandium–bipyridine-catalyzed phenylselenol addition to cis-stilbene oxide (1a).
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93% ee after 8 h according to this protocol with only trace
amounts of the deselenated carbinol 5a being formed
(Table 1, entry 1).14 Subsequently, various other 1,2-seleno
alcohols 4b–e carrying different aryl substituents were
obtained in typically moderate yields and very good enantio-
selectivities of up to 94% ee (entries 2–5). Varying
amounts of the deselenated alcohols 5 were still obtained
in typically slightly lower enantioselectivities. The principal
other side reaction which we have encountered also with
other less reactive nucleophiles is the Lewis acid-catalyzed
epoxide rearrangement furnishing the corresponding alde-
hydes in yields <10%, which appears to compete effectively
when the nucleophilic epoxide opening event is rather slow.
Unfortunately, aliphatic meso-epoxides turned out to be
not suitable substrates for this process delivering the prod-
ucts in low enantioselectivities.

To turn the sequential epoxide opening-deselenation
reaction into the dominant reaction pathway we employed
Table 1
Scandium–bipyridine-catalyzed selenol addition to aromatic meso-epoxides (1)
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Entry Epoxide 1 (Ar) Cond.a

1 1a (Ph) A
2 1b (4-F–Ph) A
3 1c (4-Cl–Ph) A
4 1d (4-Br–Ph) A
5 1e (3-Me–Ph) A
6 1a (Ph) B
7 1b (4-F–Ph) B
8 1c (4-Cl–Ph) B
9 1d (4-Br–Ph) B

10 1e (3-Me–Ph) B

a Reaction conditions A: reaction in the dark with degassed solvent, 1.5 e
3 � 0.5 equiv of PhSeH over 8 h; B: reaction with reagent-grade solvent unde
another 2 equiv after 24 h.

b Yields refer to isolated and chromatographically purified product.
c Ee was determined by chiral HPLC on a Daicel OD-H-column.
normal reagent-grade solvent and ran the reaction under
usual daylight conditions for 48 h.14 In fact, the desele-
nated carbinols 5a–e were now obtained as major products
in up to 65% yield and high enantioselectivities (entries
6–10) while the 1,2-seleno alcohols 4 were isolated as
minor products, which could be easily removed by chro-
matography. We suspect that the slight decrease in enan-
tiomeric purity of carbinols 5 as opposed to the 1,2-
seleno alcohols 4 stems from partial hydrogen abstraction
at the benzylic carbinol center under the radical conditions
leading to partial racemization. Notably, this one-pot
sequence constitutes an elegant alternative to the currently
not possible enantioselective hydride addition to meso-
epoxides.15

The facile deselenation reaction of the 1,2-seleno alco-
hols 4 initially formed apparently rests upon the stabili-
zation of the transient benzyl radical. Thus, 1,2-seleno
alcohol 4f, which was obtained in 71% yield albeit only
Ar
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SePh
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Yield of 4b,c (%) Yield of 5b,c (%)

77 (93% ee) <5 (92% ee)
51 (93% ee) 16 (80% ee)
51 (89% ee) 17 (85% ee)
67 (91% ee) 5 (91% ee)
51 (94% ee) 18 (86% ee)
7 (94% ee) 63 (90% ee)
6 (n.d.) 60 (75% ee)
10 (89% ee) 64 (87% ee)
12 (92% ee) 64 (92% ee)
<5 (94% ee) 64 (92% ee)

quiv PhSeH added at the start of the reaction followed by addition of
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24% ee through ring-opening of cyclohexene oxide did not
show any tendency to undergo the deselenation reaction
even under reaction conditions B, which typically favor
the formation of the deselenated alcohols. To probe the
influence of the chiral catalyst to facilitate the deselenation
reaction we treated 1,2-seleno alcohol 4b with 2 equiv of
PhSeH with and without the chiral catalyst (Scheme 2).
In the absence of the catalyst a slow deselenation occurred
giving rise to deselenated alcohol 5b in just 25% along with
52% of recovered seleno alcohol 4b after 1 day at rt. In the
presence of either the scandium–bipyridine catalyst or sim-
ply ligand 3 alone, however, 5b was obtained in good yields
under otherwise identical reaction conditions with only
trace amounts of the starting material being recovered.
We suspect that the basic bipyridine ligand assists in the
abstraction of the selenol proton, which most likely is the
first step towards the formation of the selenol radical.
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Scheme 2. Control experiments for the deselenation reaction.
In conclusion, we have shown that the chiral scandium–
bipyridine complex effectively catalyzed the selenol addi-
tion to aromatic meso-epoxides and furnished 1,2-seleno
alcohols in moderate to good yields and typically high
enantioselectivities. Furthermore, a sequential epoxide
opening-deselenation protocol has been developed, which
gave rise to formal hydride addition products in moderate
yields and high ee’s.
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